

HIGH PRECISION

WWW.UNICORECOMM.COM

# **UM981**

# GPS/BDS/GLONASS/Galileo/QZSS All-constellation Multi-frequency RTK/INS Integrated Positioning Module

Copyright© 2009-2023, Unicore Communications, Inc. Data subject to change without notice.



# **Revision History**

| Version | ion Revision History |           |
|---------|----------------------|-----------|
| R1.0    | First release        | Dec. 2023 |

### Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通", "UNICORECOMM" and other trade name,

trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks").

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

### Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

## Contents

| 1 | Config | guration Commands                | 1 |
|---|--------|----------------------------------|---|
|   | 1.1    | Lever Arm Configuration          | 1 |
|   | 1.2    | Enable/Disable Tilt Compensation | 1 |
|   | 1.3    | Antenna Height Configuration     | 2 |
|   | 1.4    | Clear IMU Parameters             | 2 |
|   | 1.5    | INS Reliability Configuration    | 3 |
| 2 | Outpu  | It Logs                          | 3 |
|   | 2.1    | SLANTSTATUS                      | 3 |
|   | 2.2    | SLANTAP                          | 5 |



## **User Interface of Tilt Measurement**

This protocol follows Unicore-defined format, as shown in *Unicore Reference Commands Manual For N4 High Precision Products*.

# **1** Configuration Commands

### 1.1 Lever Arm Configuration

### **Command Format:**

CONFIG IMUTOANT OFFSET [x] [y] [z] [stdx] [stdy] [stdz]

### Example:

CONFIG IMUTOANT OFFSET -0.025 0.031 0.040 0.010 0.010 0.010

(x, y, z) represents the vector from the center of the UM981 module to the phase center of the antenna. The coordinate system is marked on the front of the UM981 module, and the coordinates are measured in meters, which accurate to millimeters. (stdx, stdy, stdz) is the standard deviation of (x, y, z), which is in meters and accurate to millimeters.

The relative position between the module and the antenna should be fixed. Please keep the center of the UM981 module as close to the phase center of the antenna as possible.

After setting the parameters, send "SAVECONFIG" to save the configuration to the FLASH.

Users can input the CONFIG command to query the current configuration.

The lever arm parameters only need to be configured for the first use and can be obtained from FLASH for subsequent uses.

### 1.2 Enable/Disable Tilt Compensation

### Command Format: CONFIG INS [parameter]

Example: CONFIG INS SLANTMEAS

### UM981 Commands and Logs Reference Book

| Log Header | Configuration<br>Item | Parameter | Description                                                                                        |
|------------|-----------------------|-----------|----------------------------------------------------------------------------------------------------|
| CONFIG INS |                       | DISABLE   | Disable all functions of INS, including the output of IMU data, GNSS/INS integrated solution, etc. |
|            |                       | RESET     | Reset INS to the unaligned state                                                                   |
|            |                       | SLANTMEAS | Enable tilt compensation                                                                           |

#### Table 1-1 INS Configuration

### 1.3 Antenna Height Configuration

This command is used to configure the length from the phase center of the antenna to the tip of the survey pole, in meters, accurate to millimeters.

### **Command format:**

CONFIG ANTENNADELTAHEN LEN

#### Example:

**CONFIG ANTENNADELTAHEN 2.192** 

### **1.4 Clear IMU Parameters**

This command is used to clear the IMU parameters estimated by the algorithm in real time or the factory-calibrated IMU parameters. After this command is executed, the relevant parameters of IMU need to be recalibrated the next time the tilt compensation is enabled.

### Command format:

ERASE IMUPARAM [parameter]

### Example:

**ERASE IMUPARAM** 

### Table 1-2 Clear IMU Parameters

| Log Header | Configuration<br>Item | Parameter | Description                    |
|------------|-----------------------|-----------|--------------------------------|
| ERASE      | IMUPARAM              | null      | Clear the saved IMU parameters |
|            |                       | TBD       | To be determined               |
|            |                       | TBD       | To be determined               |



### 1.5 INS Reliability Configuration

This command is used to configure the reliability level of INS.

### Command format:

CONFIG INSRELIABILITY [parameter]

### Example:

CONFIG INSRELIABILITY 7

### Table 1-3 INS Reliability Configuration

| Log header | Configuration<br>Item | Parameter | Description                  |
|------------|-----------------------|-----------|------------------------------|
|            | INSRELIABILITY        | 1         | Slightly lower reliability   |
| CONFIG     |                       | 4         | Normal reliability (default) |
|            |                       | 7         | High reliability             |

# 2 Output Logs

### 2.1 SLANTSTATUS

This log contains the status information when tilt compensation is initialized. Users can perform corresponding operations according to the status information.

- "WAITING" means waiting for the tilt compensation to be enabled.
- "STATIC" means to keep the survey pole static and as vertical to the ground as possible.
- "RTKNOFIX" means no RTK fix solution and waiting for RTK fix.
- "MOVING" means to move the survey pole left and right, back and forth, while keeping the pole tip on the ground.
- "INSBIGERR" means the accuracy of INS solution is low and the user needs to rock the survey pole.
- "CONVERGENCE" means the initialization is successfully finished and the pole tip can be put at the measurement point.

The initialization process should be carried out in an environment with good GNSS signals.

### Message ID: 513

### ASCII Syntax: SLANTSTATUSA 1

### UM981 Commands and Logs Reference Book

### **BINARY Syntax:**

SLANTSTATUSB 1

#### Message Output:

#SLANTSTATUSA,40,GPS,FINE,2206,200969000,0,0,18,0;WAITING,0,0,0,0,0,0\*c02862df #SLANTSTATUSA,40,GPS,FINE,2206,200979000,0,0,18,0;STATIC,0,0,0,0,0,0\*b02573df #SLANTSTATUSA,40,GPS,FINE,2206,200986000,0,10,18,0;MOVING,0,0,0,0,0\*94922df3 #SLANTSTATUSA,40,GPS,FINE,2206,201002000,0,15,18,0;CONVERGENCE,0,0,0,0,0\*b86 cd091

| ID | Field Type   | Data Description                    | Format | Binary<br>Bytes | Binary<br>Offset |
|----|--------------|-------------------------------------|--------|-----------------|------------------|
| 1  | SLANTSTATUS  | Log header, see <i>Unicore</i>      |        | н               | 0                |
|    | header       | Reference Commands Manual For       |        |                 |                  |
|    | Tieduei      | N4 High Precision Products          |        |                 |                  |
|    |              | Status information:                 |        |                 |                  |
|    |              | 0: WAITING                          |        |                 |                  |
|    |              | Tilt compensation disabled          |        |                 |                  |
|    |              | 5: STATC                            |        |                 |                  |
|    |              | Keep the survey pole static and     |        |                 | H+0              |
|    |              | vertical to the ground              |        |                 |                  |
|    |              | 8: RTKNOFIX                         |        |                 |                  |
| 2  | Status       | Wait for RTK fix                    | CHAB   | 1               |                  |
| 2  | Status       | 10: MOVING                          |        |                 |                  |
|    |              | Move the survey pole back and       |        |                 |                  |
|    |              | forth, left and right               |        |                 |                  |
|    |              | 12: INSBIGERR                       |        |                 |                  |
|    |              | Large error of INS solution, rock   |        |                 |                  |
|    |              | the survey pole                     |        |                 |                  |
|    |              | 15: CONVERGENCE                     |        |                 |                  |
|    |              | INS convergence finished            |        |                 |                  |
| 3  | Calibrate    | 0: normal initialization            | CHAR   | 1               | H+1              |
| Ŭ  | Guilbrute    | 6: IMU calibration                  |        | ·               |                  |
| 4  | Processing   | 0~100, percentage of the            | CHAB   | 1               | H+2              |
|    |              | initialization/calibration progress |        |                 |                  |
| 5  | cReserved    | Reserved                            | CHAR   | 1               | H+3              |
|    |              | Height of the survey pole,          |        |                 |                  |
| 6  | LeverHight   | configured by users, in             | INT    | 4               | H+4              |
|    |              | millimeters                         |        | ļ               |                  |
| 7  | iReserved[2] | Reserved                            | INT[2] | 8               | H+8              |
| 8  | хххх         | 32-bit CRC (ASCII or binary)        | Hex    | 4               | H+16             |
| 9  | [CR][LF]     | Sentence terminator (ASCII only)    | -      |                 |                  |

#### Table 2-1 SLANTSTATUS Data Structure



### 2.2 SLANTAP

After the initialization is finished, this log outputs the position of the measurement point and the tilt angle of the survey pole.

#### Message ID: 514

ASCII Syntax: SLANTAPA ONCHANGED

### **BINARY Syntax:**

SLANTAPB ONCHANGED

#### Message Output:

#SLANTAPA,39,GPS,FINE,2283,115797630,0,0,18,1;1,0,2283,115797600,40.0786368679 5,116.23635885107,34.229092,0.009176,0.008366,0.024702,24.016890,107.756493,0.0 00000,0\*32d1306a

| ID | Field Type        | Data Description                                                                                            | Format | Binary<br>Bytes | Binary<br>Offset |
|----|-------------------|-------------------------------------------------------------------------------------------------------------|--------|-----------------|------------------|
| 1  | SLANTAP<br>header | Log header, see <i>Unicore Reference</i><br><i>Commands Manual For N4 High</i><br><i>Precision Products</i> |        | н               | 0                |
| 2  | ValidFlag         | Validity flag, indicating whether<br>the following values are valid:<br>1-valid; 0-invalid                  | CHAR   | 1               | H+0              |
| 3  | Reserved          | Reserved                                                                                                    | CHAR   | 1               | H+1              |
| 4  | Week              | GPS week number                                                                                             | USHORT | 2               | H+2              |
| 5  | TowMs             | GPS milliseconds of week                                                                                    | UINT   | 4               | H+4              |
| 6  | Lat               | Latitude (degree)                                                                                           | DOUBLE | 8               | H+8              |
| 7  | Lon               | Longitude (degree)                                                                                          | DOUBLE | 8               | H+16             |
| 8  | Hgt               | Height (meter)                                                                                              | DOUBLE | 8               | H+24             |
| 9  | Lat std           | Standard deviation of latitude<br>(meter)                                                                   | FLOAT  | 4               | H+32             |
| 10 | Lon std           | Standard deviation of longitude<br>(meter)                                                                  | FLOAT  | 4               | H+36             |
| 11 | Htg std           | Standard deviation of height<br>(meter)                                                                     | FLOAT  | 4               | H+40             |
| 12 | Slant angle       | Tilt angle of the survey pole<br>(degree)                                                                   | FLOAT  | 4               | H+44             |

#### Table 2-2 SLANTAP Data Structure

### UM981 Commands and Logs Reference Book

| ID | Field Type    | Data Description                       | Format | Binary<br>Bytes | Binary<br>Offset |
|----|---------------|----------------------------------------|--------|-----------------|------------------|
| 13 | Slant azimuth | Azimuth of the survey pole<br>(degree) | FLOAT  | 4               | H+48             |
| 14 | Reserved1     | Reserved                               | FLOAT  | 4               | H+52             |
| 15 | Reserved2     | Reserved                               | INT    | 4               | H+56             |
| 16 | хххх          | 32-bit CRC (ASCII or binary)           | Hex    | 4               | H+60             |
| 17 | [CR][LF]      | Sentence terminator (ASCII only)       | -      |                 |                  |

### 和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路7号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094 www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com



www.unicorecomm.com