

HIGH PRECISION
COMMANDS AND LOGS

WWW.UNICORECOMM.COM

UM981

BDS/GPS/GLONASS/Galileo/QZSS All-constellation Multi-frequency RTK/INS Integrated Positioning Module

Copyright© 2009-2023, Unicore Communications, Inc. Data subject to change without notice.

Revision History

Version	Revision History	Date
R1.0	First release	Sept. 2023

Legal Right Notice

This manual provides information and details on the products of Unicore Communication, Inc. ("Unicore") referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts contained in this manual are fully reserved, including but not limited to the copyrights, patents, trademarks and other proprietary rights as relevant governing laws may grant, and such rights may evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or any combination of those parts.

Unicore holds the trademarks of "和芯星通", "UNICORECOMM" and other trade name,

trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial referred to in this manual (collectively "Unicore Trademarks").

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other form, the granting or transferring of Unicore rights and/or interests (including but not limited to the aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided "as is" and is believed to be true and correct at the time of its publication or revision. This manual does not represent, and in any case, shall not be construed as a commitments or warranty on the part of Unicore with respect to the fitness for a particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are subject to change by Unicore at any time without prior notice, which may not be completely consistent with such information of the specific product you purchase.

Should you purchase our product and encounter any inconsistency, please contact us or our local authorized distributor for the most up-to-date version of this manual along with any addenda or corrigenda.

Contents

1	CON	IFIG Command					
	1.1	Enab	le/Disable INS	1			
	1.2	Confi	igure INS Installation Angle	2			
	1.3	Confi	igure INS Timeout	3			
	1.4	Confi	igure INS Alignment Velocity Threshold	3			
	1.5	Confi	igure Lever Arm between IMU & Master Antenna	3			
	1.6	Confi	igure INS Position Offset	5			
	1.7	Confi	igure INS Initial Azimuth and STD	6			
	1.8	Confi	igure INS Initial Attitude and STD	7			
	1.9	Confi	igure the Vehicle Moving Direction	8			
2	Data	a Output	t	9			
	2.1	NOR	MAL Header	9			
	2.2	SHOP	RT Header	11			
	2.3	Data	Output	12			
		2.3.1	IMUATT	13			
		2.3.2	GYRATT	15			
		2.3.3	INSHOTINFOR0	16			
		2.3.4	INSPVAX	17			
		2.3.5	RAWIMUX	20			
		2.3.6	DRPVA	23			

1 CONFIG Command

1.1 Enable/Disable INS

The INS function of UM981 is enabled by default. Users can input the command CONFIG INS DISABLE to disable INS. If INS needs to be enabled again, use the command CONFIG INS RESET to enable INS and reset INS to the unaligned state.

Command Format:

CONFIG INS [parameter]

Example:

CONFIG INS DISABLE

Table 1-1 Enable/Disable INS

Log Header	Function	Parameter	Description
		Disable	Disable INS
CONFIG	INS	Reset	Enable INS and reset INS to the unaligned state

1.2 Configure INS Installation Angle

This command is used to set the installation angle of the UM981 module. Make sure that the direction of the XYZ axis of the UM981 module is consistent with that of the vehicle.

Command Format:

CONFIG INS ANGLE [parameter]

Example:

CONFIG INS ANGLE 0 9000 18000

Log Header	Function	Field	Parameter	Description
	INS	ANGLE	ANGLEX	Rotation angle of the X-axis of the UM981 module relative to the X-axis of the vehicle (right-handed), in units of 0.01 degrees, range: 0~36000
CONFIG			ANGLEY	Rotation angle of the Y-axis of the UM981 module relative to the Y-axis of the vehicle (right-handed), in units of 0.01 degrees, range: 0~36000
			ANGELZ	Rotation angle of the Z-axis of the UM981 module relative to the Z-axis of the vehicle (right-handed), in units of 0.01 degrees, range: 0~36000

1.3 Configure INS Timeout

This command is used to set the output duration of INS when losing GNSS signals, in seconds.

Command Format:

CONFIG INS TIMEOUT [parameter]

Example:

CONFIG INS TIMEOUT 60

Table 1-3 Configure INS Timeout

Log Header	Function	Field	Parameter	Description
CONFIG IN	INS TIMEOUT	1~1000	The maximum time of INS positioning after losing GNSS signals, in seconds	
			> 1000	Not recommended

1.4 Configure INS Alignment Velocity Threshold

This command is used to set the velocity threshold for INS alignment. If the velocity is lower than the threshold, the INS alignment initialization will not be triggered. When the receiver connects dual antennas and completes heading, the INS will use the heading information to perform alignment and this command is invalid.

Command Format:

CONFIG INS ALIGNMENTVEL [parameter]

Example:

CONFIG INS ALIGNMENTVEL 5.0

```
Table 1-4 Configure INS Alignment Velocity Threshold
```

Log Header	Function	Field	Parameter	Description
CONFIG	INS	ALIGNMENTVEL	Velocity threshold	Set the velocity threshold for INS alignment, in meters/second

1.5 Configure Lever Arm between IMU & Master Antenna

This command is used to input the offset between the IMU and the phase center of the GNSS master antenna, which is the lever arm distance. X, Y, and Z represent the vector from the IMU to the phase center of the master antenna. Fields a, b, and c are used to

input any possible errors in the measurement. For example, if the accuracy of "X" offset is 1 centimeter, enter 0.01 in the "a" field.

In order to improve the quality of integrated positioning results, the lever arm parameters should be measured as accurate as possible.

Command Format:

CONFIG IMUTOANT OFFSET x y z [a] [b] [c]

Example:

CONFIG IMUTOANT OFFSET 0.54 0.32 1.20 0.03 0.03 0.05

Table 1-5 Configure Lever Arm between IMU & Master Antenna

Log Header	Parameter	Description
	х	X-axis offset, unit: meter, range: -100~100
	у	Y-axis offset, unit: meter, range: -100~100
	z	Z-axis offset, unit: meter, range: -100~100
CONFIG IMUTOANT	а	Error of the X-axis offset, unit: meter, range: 0.01~10 (default: from 0.01 m to 10% of the X-axis offset)
OFFSET	b	Error of the Y-axis offset, unit: meter, range: 0.01~10 (default: from 0.01 m to 10% of the Y-axis offset)
	с	Error of the Z-axis offset, unit: meter, range: 0.01~10 (default: from 0.01 m to 10% of the Z-axis offset)

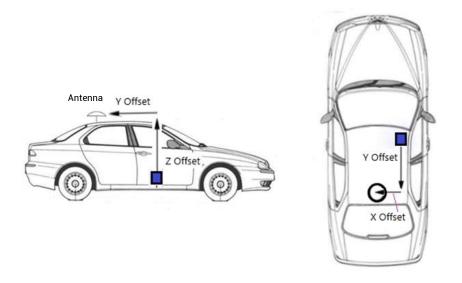


Figure 1-1 Offset from IMU to the Antenna Phase Center

When installing the IMU as shown in Figure 1-1, the offset is -X, -Y, and +Z.

1.6 Configure INS Position Offset

Assuming the center of the module is O and the other point is P, this command is used to set the value of the vector from O to P, so that messages such as INSPVAX and DRPVA can output the position and velocity at the point P.

Command Format:

CONFIG INSSOL OFFSET xoffset yoffset zoffset

Example:

CONFIG INSSOL OFFSET 0.15 0.15 0.25

Table 1-6 Configure INS Position Offset

Log Header	Parameter	Description
	X offset	X-axis offset, unit: meter, range: -100~100
CONFIG INSSOL OFFSET	Y offset	Y-axis offset, unit: meter, range: -100~100
	Z offset	Z-axis offset, unit: meter, range: -100~100

1.7 Configure INS Initial Azimuth and STD

This command is used to set the initial azimuth and its standard deviation so that INS can finish alignment in static state. In this condition, the accuracy of INS alignment is not high, and it will gradually converge and improve after the vehicle moves for a period of time.

This command cannot be saved.

Command Format:

CONFIG INS AZIMUTH azimuth azSTD

Example:

CONFIG INS AZIMUTH 90 5

In the above example, the initial azimuth is set to 90 degrees, which means the Y axis points east, within a standard deviation of 5 degrees.

Log Header	Parameter	Description
CONFIG INS	azimuth	Initial azimuth, unit: degree, range: 0 ~ 360 (north by east is positive)
AZIMUTH	azSTD	Standard deviation of azimuth, unit: degree, range: 0.000278 ~ 45 (0.000278 degrees are about one arcsecond), accurate to 6 decimal places

Table 1-7 Configure INS Initial Azimuth and STD

1.8 Configure INS Initial Attitude and STD

This command is used to set the initial attitude and its standard deviation. When using this command, INS can be aligned immediately without the need of dynamic alignment, but the accuracy in this condition is not high, and after the vehicle moves for a period of time, the accuracy of INS will gradually converge and improve.

Notes:

1. The alignment is based on user's real-time input. Using this command will make the system start faster and quickly enter the navigation mode. The input values must be accurate, otherwise the system performance will be affected.

2. If you are not sure about the input attitude, please increase the STD values.

This command cannot be saved.

Command Format:

CONFIG INS ATTITUDE pitch roll azimuth pitchSTD rollSTD azSTD

Example:

CONFIG INS ATTITUDE 0 0 90 5 5 5

In the above example, the initial pitch and roll are set to 0 degrees, and the initial azimuth is set to 90 degrees, within a standard deviation of 5 degrees. This means that the module is basically mounted horizontally with the Y axis pointing east, within a standard deviation of 5 degrees.

Log Header	Parameter	Description
	pitch	INS initial pitch, unit: degree, range: -90 ~ 90 (about X-axis rotation, right-handed)
CONFIG INS	roll	INS initial roll, unit: degree, range: -90 ~ 90 (about Y-axis rotation, right-handed)
ATTITUDE	azimuth	INS initial azimuth, unit: degree, range: 0~360 (north by east is positive)
pitchSTD		Standard deviation of pitch, unit: degree, range: 0.000278 ~ 45 (0.000278 degrees are about one arcsecond), accurate to 6 decimal places

Table 1-8 Configure INS In	itial Attitude and STD
----------------------------	------------------------

Log Header	Parameter	Description
	rollSTD	Standard deviation of roll, unit: degree, range: 0.000278 ~ 45 (0.000278 degrees are about one arcsecond), accurate to 6 decimal places
	azSTD	Standard deviation of azimuth, unit: degree, range: 0.000278 ~ 45 (0.000278 degrees are about one arcsecond), accurate to 6 decimal places

1.9 Configure the Vehicle Moving Direction

This command is used to set the initial moving direction of the vehicle to assist INS with dynamic alignment.

Command Format:

CONFIG INSDIRECTION [parameter]

Example:

CONFIG INSDIRECTION AUTO CONFIG INSDIRECTION FORWARD CONFIG INSDIRECTION BACKWARD

Table 1-9 Configure the Vehicle Moving Direction

Log Header	Parameter	Description
CONFIG INSDIRECTION	AUTO (default)	Automatically detect the moving direction; if the detection fails, it assumes that the vehicle is moving forward.
	FORWARD	Moving forward
	BACKWARD	Moving backward

2 Data Output

2.1 NORMAL Header

Table 2-1 Binary Header Structure

ID	Field Name	Field Type	Description	Binary Bytes	Binary Offset
1	Sync	Char	Hexadecimal 0xAA.	1	0
2	Sync	Char	Hexadecimal 0x44.	1	1
3	Sync	Char	Hexadecimal 0x12.	1	2
4	Header Length	Uchar	Length of the header 0x1C	1	3
5	Message ID	Ushort	Message ID of the log	2	4
6	Message Type	Char	00 = Binary 01 = ASCII 10 = Abbreviated ASCII	1	6
7	Reserved	Uchar	Reserved	1	7
8	Message Length	Ushort	The length of the message, in bytes, not including the header nor the CRC	2	8
9	Reserved	Ushort	Reserved	2	10
10	Idle Time	Uchar	CPU idle, 0~100	1	12
11	Time Status	Enum	The quality of the GPS reference time. 20 = UNKNOWN; 160 = FINE	1	13
12	Week	Ushort	GPS reference week number	2	14

ID	Field Name	Field Type	Description	Binary Bytes	Binary Offset
13	ms	Ulong	Milliseconds from the beginning of the GPS reference week	4	16
14	Reserved	Ulong		4	20
15	BDS time offset to GPS Second	Ushort	Time offset between BDS and GPS. This field stores the time offset between BDS second and GPS second within a week. BDS second = GPS second – offset	2	24
16	Reserved	Ushort		2	26

Table 2-2 ASCII Header Structure

ID	Field Name	Field Type	Description
1	Sync	Char	Sync character. The ASCII message is always preceded by a "#" symbol
2	Message	Char	The ASCII name of the log or command
3	Port	Char	The name of the port from which the log was generated. The string is made up of the port name followed by an _x where x is a number from 1 to 31 denoting the virtual address of the port. If no virtual address is indicated, it is assumed to be address 0.
4	Sequence#	Long	Used for multiple related logs. It is a number that counts down from N-1 to 0, where 0 means it is the last one of the set. Most logs only come out one at a time in which case this number is 0

ID	Field Name	Field Type	Description
5	% IdleTime	Float	The minimum percentage of time the processor is idle, calculated once per second
6	TimeStatus	Enum	The quality of the GPS reference time. Value = Unknown or Fine, Unknown means the receiver hasn't calculated the accurate GPS time.
7	Week	Ulong	GPS reference week number
8	Seconds	GPSec	Seconds from the beginning of the GPS reference week; accurate to the millisecond level
9	Receiver Status	Ulong	Reserved
10	BDS time offset to GPS Second	Char	Reserved
11	UTC time offset to GPS Second	Ulong	Current leap seconds
12	;	Char	The character indicates the end of the header

2.2 SHORT Header

The total length of the BINARY header is 12 bytes.

ID	Field Name	Field Type	Description	Binary Bytes	Binary Offset
1	Sync	Uchar	Hexadecimal 0xAA.	1	0
2	Sync	Uchar	Hexadecimal 0x44.	1	1
3	Sync	Uchar	Hexadecimal 0xB6	1	2

ID	Field Name	Field Type	Description	Binary Bytes	Binary Offset
4	MessageLength	Uchar	Message length, not including the header	1	3
5	Message ID	Ushort	Message ID	2	4
6	Wn	Ushort	GPS reference week number	2	6
7	Ms	ULONG	Milliseconds from the beginning of the GPS reference week	4	8

Table 2-4 Short Header in ASCII Format

ID	Field Name	Field Type	Description	
1	Sync	Char	Sync character. The ASCII message is always preceded by a single "%" symbol	
2	Message	Char	The ASCII name of the log or command	
3	Wn	Ushort	GPS reference week number	
4	Ms	ulong	Milliseconds from the beginning of the GPS reference week	

2.3 Data Output

A log consists of a header, data and CRC.

Header has two formats—normal header and short header. For detailed information, please see the previous section.

For each message, there are 4 output formats at most.

- 1) XXXA represents normal header in ASCII format;
- 2) XXXB represents normal header in BINARY format;
- 3) XXXSA represents short header in ASCII format;
- 4) XXXSB represents short header in BINARY format;

Taking GYRATT message for example, the 4 output formats are shown below.

Table 2-5 Data Output Formats

	Normal header	Short header
ASCII	GYRATTA	GYRATTSA
BINARY	GYRATTB	GYRATTSB

* So far, only GYRATT supports SHORT header.

2.3.1 IMUATT

After the INS initialization is finished, this log outputs IMU measurements and INS attitude information.

Message ID: 1442

ASCII Syntax:

IMUATTA 0.1

BINARY Syntax:

IMUATTB 0.1

Message Output:

#IMUATTA,87,GPS,FINE,2264,459002400,0,0,18,10404;INS_ALIGNING,NONE,0,0,0,0,-31,-166,-3974,-5,-1,2,0,0*bf075814

Table 2-6 IMUATT Message Structure

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	IMUATT header	Log header, see Table 2-1 Binary Header Structure and Table 2-2 ASCII Header Structure		Н	0
2	INS Status	INS solution status, see Table 2-7	Enum	4	н
3	Pos Type	Position type, see Table 2-8	Enum	4	H+4
4	SOL age	INS solution age, in units of 0.001 s	UINT	4	H+8
5	Dr age	INS DR age, in units of 0.1 s	USHORT	2	H+12
6	Roll	Roll (right-handed rotation around Y axis), unit: 360/32767 [deg]	SHORT	2	H+14

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
7	Pitch	Pitch (right-handed rotation around X axis), unit: 360/32767 [deg]	SHORT	2	H+16
8	Azimuth	Azimuth, north by east is positive, unit: 360/32767 [deg]	SHORT	2	H+18
9	Acc_X	Acceleration along X axis, unit: 80/32767[m/s^2]	SHORT	2	H+20
10	Acc_Y	Acceleration along Y axis, unit: 80/32767[m/s^2]	SHORT	2	H+22
11	Acc_Z	Acceleration along Z axis, unit: 80/32767[m/s^2]	SHORT	2	H+24
12	Gyro_X	Angular velocity around X axis, unit: 500/32767[deg/s]	SHORT	2	H+26
13	Gyro_Y	Angular velocity around Y axis, unit: 500/32767[deg/s]	SHORT	2	H+28
14	Gyro_Z	Angular velocity around Z axis, unit: 500/32767[deg/s]	SHORT	2	H+30
15	Reserved	Reserved	SHORT	2	H+32
16	Reserved	Reserved	SHORT	2	H+34
17	хххх	32-bit CRC (ASCII or binary)	Hex	4	H+36
18	[CR][LF]	Sentence terminator (ASCII only)	-		

Table 2-7 INS Solution Status

Binary	Field	Description
0	INS_INACTIVE	IMU data invalid; INS inactive
1	INS_ALIGNING	INS is aligning
2	INS_HIGH_VARIANCE	INS is in navigation mode, but the error of azimuth has exceeded the threshold. For most IMUs, the default threshold is 2 degrees.

Binary	Field	Description
3	INS_SOLUTION_GOOD	Entered the navigation mode and the INS solution is good
6	INS_SOLUTION_FREE	DR mode, no GNSS participated in the integrated solution
7	INS_ALIGNMENT_COMPLETE	INS alignment completed, but not enough vehicle dynamics to make the accuracy meet the requirement.

Table 2-8 Position and Velocity Type

Binary	Field	Description
0	NONE	No solution
1-51	Reserved	Reserved
52	INS	Only inertial navigation solution
53	INS_PSRSP	Integrated solution of INS and single point positioning
54	INS_PSRDIFF	Integrated solution of INS and pseudorange differential positioning
55	INS_RTKFLOAT	Integrated solution of INS and RTK float
56	INS_RTKFIXED	Integrated solution of INS and RTK fix
57-74	Reserved	Reserved

2.3.2 GYRATT

After the INS initialization is finished, this log outputs IMU measurements and INS attitude information.

Message ID: GYRATT: 1444 GYRATTS: 1443

ASCII Syntax:

GYRATTA 0.1 GYRATTSA 0.1

BINARY Syntax:

GYRATTB 0.1

GYRATTSB 0.1

Message Output:

%GYRATTSA,2264,459017550;INS_ALIGNING,NONE,0,0,0,0,0,0,0,0*89b0a7b9

Table 2-9 GYRATT Message Structure

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	GYRATT header	Log header, see Table 2-1, Table 2-2, Table 2-3 and Table 2-4		н	0
2	INS Status	INS solution status, see Table 2-7	UCHAR	1	н
3	Pos Type	Position type, see Table 2-8	UCHAR	1	H+1
4	Dr age	INS DR age, in units of 0.1 s	USHORT	2	H+2
5	SOL age	INS solution age, in units of 0.001 s	UINT	4	H+4
6	Roll	Roll (right-handed rotation around the Y axis), unit: 360/32767 [deg]	SHORT	2	H+8
7	Pitch	Pitch (right-handed rotation around the X axis), unit: 360/32767 [deg]	SHORT	2	H+10
8	Azimuth	Azimuth, north by east is positive, unit: 360/32767 [deg]	SHORT	2	H+12
9	Gyro_Z	Angular velocity around Z axis, unit: 500/32767 [deg/s]	SHORT	2	H+14
10	Reserved	Reserved	SHORT	2	H+16
11	Reserved	Reserved	SHORT	2	H+18
12	хххх	32-bit CRC (ASCII or binary)	Hex	4	H+20
13	[CR][LF]	Sentence terminator (ASCII only)	-		

2.3.3 INSHOTINFOR0

After the board starts up, this message is output to the host computer. At the next time the board is powered on, the host computer will transmit the previously received message to the board to assist in the quick initialization of INS.

Message ID: 1441

BINARY Syntax:

INSHOTINFOR0B 0.1

Table 2-10 INSHOTINFOR0 Message Structure

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	INSHOTINFOR0 header	Log header, see Table 2-1 Binary Header Structure and Table 2-2 ASCII Header Structure		Н	0
2~15	Body[48]	Data	Char	48	Н
16	хххх	32-bit CRC (ASCII or binary)	Hex	4	H+48
17	[CR][LF]	Sentence terminator (ASCII only)	-		

2.3.4 INSPVAX

This log is used to output the integrated position, velocity, attitude, and their estimated errors.

Message ID: 1465

ASCII Syntax:

INSPVAXA 1

BINARY Syntax:

INSPVAXB 1

Message Output:

#INSPVAXA,COM1,0,73.5,FINESTEERING,1695,309428.000,00000040,4e77,43562; INS_SOLUTION_GOOD,INS_PSRSP,51.11637873403,-114.03825114994,1063.6093,-16.9000,-0.0845,-0.0464,-0.0127,0.138023492,0.069459386,90.000923268,0.9428, 0.6688,1.4746,0.0430,0.0518,0.0521,0.944295466,0.944567084,1.000131845,3,0*e877c 178

Table 2-11 INSPVAX Message Structure

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	INSPVAX	Log header, see Table 2-1 Binary Header Structure and Table 2-2 ASCII Header Structure		Н	0
2	INS Status	INS status, see Table 2-7 INS Solution Status	Enum	4	Н
3	Pos Type	Position type, see Table 2-8 Position and Velocity Type	Enum	4	H+4
4	Latitude	Latitude (WGS84) [degrees]	Double	8	H+8
5	Longitude	Longitude (WGS84) [degrees]	Double	8	H+16
6	Height	Height [m]	Double	8	H+24
7	Undulation	Geoidal separation – the difference between the mean-sea-level (geoid) surface and the WGS84 ellipsoid surface, in meters. If the geoid is above the ellipsoid, the value is positive; otherwise, it is negative.	Float	4	H+32
8	North Velocity	Velocity in a northerly direction (negative implies south) [m/s]	Double	8	H+36
9	East Velocity	Velocity in an easterly direction (negative implies west) [m/s]	Double	8	H+44
10	Up Velocity	Velocity in an up direction [m/s]	Double	8	H+52
11	Roll	Roll (right-handed rotation around Y axis) [degrees]	Double	8	H+60
12	Pitch	Pitch (right-handed rotation around X axis) [degrees]	Double	8	H+68
13	Azimuth	Azimuth, clockwise from north (left- handed rotation around Z axis) [degree]. This is the inertial azimuth calculated from the IMU gyros and integrated filters.	Double	8	H+76

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
14	Lat σ	Standard deviation of latitude [m]	Float	4	H+84
15	Long σ	Standard deviation of longitude [m]	Float	4	H+88
16	Height σ	Standard deviation of height [m]	Float	4	H+92
17	North Vel σ	Standard deviation of north velocity [m/s]	Float	4	H+96
18	East Vel σ	Standard deviation of east velocity [m/s]	Float	4	H+100
19	Up Vel σ	Standard deviation of up velocity [m/s]	Float	4	H+104
20	Roll σ	Standard deviation of roll [degrees]	Float	4	H+108
21	Pitch σ	Standard deviation of pitch [degrees]	Float	4	H+112
22	Azimuth σ	Standard deviation of azimuth [degrees]	Float	4	H+116
23	Ext sol stat	Extended solution status, see Table 2-12 Extended Solution Status	Hex	4	H+120
24	Time Since Update	Time elapsed since the last ZUPT or position update (seconds)	Ushort	2	H+124
25	xxxx	32-bit CRC	Hex	4	H+126
26	[CR][LF]	Sentence terminator (ASCII only)	-	-	-

Table 2-12 Extended Solution Status

Bit	Mask (Hexadecimal)	Description
0	0x0000001	Position update
1	0x0000002	Phase update
2	0x0000004	Zero velocity update
3	0x0000008	Wheel sensor update
4	0x0000010	ALIGN (heading) update
5	0x0000020	Reserved
6	0x00000040	INS solution convergence flag

Bit	Mask (Hexadecimal)	Description
7	0x0000080 - 0x8000000	Reserved

2.3.5 RAWIMUX

This log contains IMU status, accelerometer and gyro measurements in the coordinate system marked on the IMU enclosure. It is output on time and the output frequency can be configured up to 100Hz. This log supports ASCII format and binary format.

Message ID: 1461

ASCII Syntax: RAWIMUXA 0.01

BINARY Syntax:

RAWIMUXB 0.01

Message Output:

#RAWIMUXA,COM1,0,60.0,FINE,2261,366772.050,0,0,0;00,64,2261,366772.050,0ac0000 0,16278,-70,172,-1044,-90,-200*bffb7522

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	RAWIMUX header	Log header, see Table 2-1 Binary Header Structure and Table 2-2 ASCII Header Structure	-	Н	0
2	IMU error	Abbreviated IMU erroneous flag 01 – IMU erroneous 00 – IMU normal	Uchar	1	Н
3	IMU type	IMU status, see Table 2-14	Uchar	1	H+1
4	Week	GNSS week	Ushort	2	H+2
5	Seconds Into Week	Seconds from the start of the week	Double	8	H+4
6	IMU Status	IMU status, see Table 2-15	Hex Ulong	4	H+12

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
7	Z Accel Output	Accelerometer measurement along Z axis. See Table 2-14 IMU Type	Long	4	H+16
8	- (Y Accel Output)	Accelerometer measurement along (-Y) axis. See Table 2-14 IMU Type	Long	4	H+20
9	X Accel Output	Accelerometer measurement along X axis. See Table 2-14 IMU Type	Long	4	H+24
10	Z Gyro Output	Gyro measurement along Z axis. See Table 2-14 IMU Type	Long	4	H+28
11	- (Y Gyro Output)	Gyro measurement along (-Y) axis. See Table 2-14 IMU Type	Long	4	H+32
12	X Gyro Output	Gyro measurement along X axis. See Table 2-14 IMU Type	Long	4	H+36
13	хххх	32-bit CRC	Hex	4	H+40
14	[CR][LF]	Sentence terminator (ASCII only)	-	-	-

Table 2-14 IMU Type

ID	IMU	Gyro Scale Factor	Accelerometer Scale Factor
0	UNKNOWN		
64	02	250/32767 (deg/s)	2g/32767

Table 2-15 02 IMU Status

Nibble	Bit	Mask	Description	Range Value
	0	0x00000001	Alarm Status Flag	
NO	1	0x00000002	Deserved	
NO	2	0x00000004	Reserved	
	3	0x0000008	SPI Communication Error	0 = Passed, 1 = Failed
			0 = Passed,	
N1	4	0x00000010	Sensor Over-Range	1 = One of more sensors over-ranged

Nibble	Bit	Mask	Description	Range Value	
	5	0x00000020	Initial Self Test Failure	0 = Passed, 1= Failed	
	6	0x00000040	Flash Memory Failure	0 = Passed, 1= Failed	
	7	0x0000080	Processing Overrun	0 = Passed, 1= Failed	
	8	0x00000100	Self Test Failure – X-axis gyro	0 = Passed, 1= Failed	
NO	9	0x00000200	Self Test Failure – Y-axis gyro	0 = Passed, 1= Failed	
N2	10	0x00000400	Self Test Failure – Z-axis gyro	0 = Passed, 1= Failed	
	11	0x0000800	Self Test Failure – X-axis accelerometer	0 = Passed, 1= Failed	
	12	0x00001000	Self Test Failure – Y-axis accelerometer	0 = Passed, 1= Failed	
N3	13	0x00002000	Self Test Failure – Z-axis accelerometer	0 = Passed, 1= Failed	
	14 0x00004000				
	15	0x0008000	Reserved		
	16	0x00010000			
N4	17	0x00020000	The temperature information is stored in an 11-bit data		
114	18	0x00040000			
	19	0x00080000	(two's complement) from bit 2		
	20	0x00100000	conversion algorithm to floati	ng point temperature (°C) is	
N5	21	0x00200000	as follows:		
Gri	22	0x00400000			
	23	0x00800000	ULONG ulStatus;		
	24	0x01000000	SHORT sTemp = INT(ulStatus		
N6	25	0x02000000	FLOAT fTemperature = sTemp)*U.125+23;	
UVI	26	0x04000000			
	27	0x08000000			

Nibble	Bit	Mask	Description	Range Value
	28	0x10000000		
17	29	0x20000000		
N7	30	0x40000000	-	
	31	0x80000000		

2.3.6 DRPVA

This log is used to output GNSS+INS integrated position, velocity, attitude, and their standard deviations.

Message ID: 57024

ASCII Syntax:

DRPVAA 0.2

BINARY Syntax:

DRPVAB 0.2

Message Output:

#DRPVAA,COM1,0,92.0,FINE,1867,111471.800,00000000,14,0;SOL_COMPUTED,SINGLE, WGS84,0,0,0,0,0.800,2573.000,40.07899836523,116.23661722090,68.5569,-

9.7848,0.1522,0.1489,0.0213,-0.0001,-

0.0001,0.0010,0.0096,0.0097,0.0097,359.589710,-

Table 2-16 DRPVA Message Structure

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
1	DRPVA header	Log header, see Table 2-1 Binary Header Structure and Table 2-2 ASCII Header Structure		Н	0
2	sol status	Solution status, see Table 2-17	Enum	4	Н
3	pos type	Position type, see Table 2-8	Enum	4	H+4
4	datum id#	Datum ID, only WGS84 (binary = 61) is supported currently	Enum	4	H+8

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
5~8	Reserved[4]	Reserved	CHAR	4	H+12
9	Dr_age	Age of DR only, seconds	Float	4	H+16
10	Sol_age	Age of continuous positioning, seconds	Float	4	H+20
11	lat	Latitude, degrees	Double	8	H+24
12	lon	Longitude, degrees	Double	8	H+32
13	hgt	Height, meters	Double	8	H+40
14	undulation	Geoidal separation – the difference between the mean-sea- level (geoid) surface and the WGS84 ellipsoid surface, in meters.	Float	4	H+48
15	lat σ	Standard deviation of latitude, meters	Float	4	H+52
16	lon σ	Standard deviation of longitude, meters	Float	4	H+56
17	hgt σ	Standard deviation of height, meters	Float	4	H+60
18	Ve	Velocity in an easterly direction, m/s	Double	8	H+64
19	Vn	Velocity in a northerly direction, m/s	Double	8	H+72
20	Vu	Velocity in an up direction, m/s	Double	8	H+80
21	Veσ	Standard deviation of east velocity, m/s	Float	4	H+88
22	νησ	Standard deviation of north velocity, m/s	Float	4	H+92
23	Vuσ	Standard deviation of up velocity, m/s	Float	4	H+96

ID	Field Type	Data Description	Format	Binary Bytes	Binary Offset
24	Heading	Heading, north by east is positive, degrees, [0,360]	Double	8	H+100
25	Pitch	Pitch, the vehicle heading up is positive, in degrees, [-90, 90]	Double	8	H+108
26	Roll	Roll, the vehicle body leaning right is positive, in degrees, [-180, 180]	Double	8	H+116
27	Heading σ	Standard deviation of heading, degrees	Float	4	H+124
28	Pitch σ	Standard deviation of pitch, degrees	Float	4	H+128
29	Roll σ	Standard deviation of roll, degrees	Float	4	H+132
30~33	Reserved[4]	Reserved	Long	16	H+136
34~37	Reserved[4]	Reserved	Float	16	H+152
38~41	Reserved[4]	Reserved	Double	32	H+168
42	хххх	32-bit CRC (ASCII and binary)	Hex	4	H+200
43	[CR][LF]	Sentence terminator (ASCII only)	-	-	-

Table 2-17 Solution Status

Solution S	tatus	Description
0	SOL_COMPUTED	Solution computed
1	INSUFFICIENT_OBS	Insufficient observation
2	NO_CONVERGENCE	No convergence, invalid solution
4	COV_TRACE	Covariance matrix trace exceeds maximum (trace > 1000 m)

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路7号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094 www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicorecomm.com